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ABSTRACT

Studies on post-translational modifications (PTMs) have 
grabbed attention of the scientific community worldwide, 
its role in pathogenesis of cancer and prognostic biomarkers 
associated with cancers. However, unraveling the specific role 
of PTMs in carcinogenesis or in predictive biomarkers requires 
holistic understanding of the cancer types and associated 
mechanisms. Manifestation of cancer is complex and involves 
multiple steps including modifications at the levels of genes, 
associated proteins and signaling pathways. Biomarkers, as a 
prognostic marker, are critical in deciding efficacy of the clinical 
outcomes in malignancies. Growing evidence suggests that 
several biomarkers that are post-translationally modified play 
important role in human cancers. In the current review, few 
of such biomarkers and targets that are post-translationally 
modified and are associated with carcinogenesis are collated 
and analyzed to provide a bird’s eye view of their role in 
cancer types. Such analysis will help in understanding the 
pathogenesis and the precise role of biomarkers in designing 
better therapeutic interventions for different cancer types.    

KEYWORDS: Cancer Markers; Oncoproteins; Kinase; 
Phosphorylation; Methylation

METHODS 

The writing of this review involved a comprehensive search of 
original articles and reviews published on the subject of post 
translational modifications. Free search engine PubMed was 
used to conduct the online search. Sorting option ‘Best Match’ 
of PubMed was used to conduct the more relevant search. 
Various expressions were used to find relevant references 
for example, “post translational modifications in cancer”, 
“acetylation in cancer and post translational modifications”, 
“methylation in cancer and post translational modifications”, 
“biomarkers in cancer” etc. Some other expressions were used 
to conduct a more specific search to complement the findings 

in the articles retrieved with the more general search criteria 
for example, “checkpoint kinase 1 in cancer”, “candidate tumor 
suppressor BTG3” etc. Further, some articles were also found 
through reading of previous reviews on similar subjects 
including the ones by Karve and Cheema [1], and Han et al, [2]. 
Articles clearly related to the theme of this review and those 
that matched the search criteria were selected according to 
their year of publication (only articles published after 2000 
were included in this review, except in specific situations) and 
relevance to the aims of this review.
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INTRODUCTION: Clinically relevant post-translational 
modifications (PTMs)

‘Omic’ technologies (genomics, transcriptomics, proteomics 
and metabolomics) have evolved rapidly over the last decade. 
Evolution of these technologies has offered ample potential 
in the hunt for molecular markers of early stage cancers. 
However, these methods can be insufficient to investigate 
the dynamic nature of signaling processes that cells exhibit 
during their transformation to become tumor [3].

During the transformation of a cell from normal to neoplastic 
(tumorous) many important signaling events takes place 
which are controlled by the diverse realm of post-translational 
modifications (PTMs) [4]. PTMs are one of the critical regulatory 
mechanisms of cells affecting a number of biological functions. 
Various proteins are controlled by PTMs which are, in general, 
reversible. Since 2000, >54K articles on PTMs have been 
published as per the data obtained from PubMed. More than 
450 unique protein modifications have been identified till 
date [2], including acetylation, methylation, phosphorylation, 
SUMOylation and ubiquitination, all of these PTM types can 
modify the activity of target proteins. 

PTMs offer an abundance of potential candidates for 
biomarker detection hence PTMs related to these biomarkers 
should well be pursued for development of promising 
surrogate markers. Applications of many forms of PTMs have 
been identified in cancer medicine, however, for several 
other PTM types, applications are not yet readily apparent. It 
is worthwhile to explore different types of PTMs as they may 
prove valuable in near future to improve our understanding 
of carcinogenesis and fight against it. This review focuses on 
recent advancements in our understanding of various PTMs 
in the perspective of carcinogenesis. Some of the prominent 
proteins and associated PTMs relevant to carcinogenesis 
investigated by many laboratories are highlighted in Table 1.

Table 1: Post-translational modifications (PTMs) associated with proteins 

causative to oncogenesis

Protein

Post-transla-
tional Modifi-
cation (PTM) 
Type

General Expression 
Pattern in Cancer

Refer-
ence

NF-kB

Acetylation

Overexpressed [5]

LDH-A Overexpressed [6]

p53 Under-expressed [7]

GP73

Glycosylation

Overexpressed [8]

MUC1 Overexpressed [9]

MUC16 Overexpressed [10]

CD44 Overexpressed [11]

GPCR

Methylation

Overexpressed [12]

HMGB1 Overexpressed     [13]

RIOK1 Overexpressed [14]

CHK1 Overexpressed [15]

UBE2F
Neddylation

Overexpressed [16]

HuR Overexpressed [17]

PTEN

Phosphoryla-
tion

Under-expressed [18]

STAT-3 Overexpressed [19]

Osteo-
pontin Overexpressed [20]

EGFRs Overexpressed [21]

AKT Overexpressed [22]

p53 Under-expressed [23]

DAPK1 Overexpressed [24]

Rho Prenylation Overexpressed/Un-
der-expressed [25]

Ubc9

SUMOylation

Overexpressed [26]

FOXK2 Under-expressed [27]

HIC1 Under-expressed [28]

CHK1
Ubiquitination

Overexpressed [29]

p53 Under-expressed [30]

Acetylation

Acetylation has emerged as a dynamic post translational 
modification that plays a key role in regulating nuclear 
transcription and metabolic homeostasis [33]. It mediates 
regulation of cellular processes, intermediary metabolism 
and metabolic enzymes via enzymatic activation or 
inhibition and further influence protein stability. Acetylation 
reactions are catalyzed by various N-terminal (NAT) and 
lysine acetyltransferases. Lysine acetylation, in particular, 
is enzymatically reversible and is tightly regulated by 
metabolism-dependent mechanisms.

Our understanding of protein acetylation has increased 
significantly in recent years by global proteomics analyses. 
Kim et al, [34] conducted the first proteomic survey for the 
acetylation modification and identified 388 acetylation sites in 
195 proteins among the proteins derived from HeLA cells and 
mouse liver mitochondria. A comprehensive characterization 
of protein acetylation dynamics using mass spectrometry 
(MS) based proteomics revealed around 1,000 sites with 
significantly increasing acetylation trends [35]. 

Acetylation and deacetylation interplay is the key for 
many important cellular processes, malfunctioning in this 
machinery can result in severe conditions such as cancer, 
neurodegenerative diseases and cardiovascular disorders [36, 
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37]. Acetylation specific site mutations are enriched in cancer 
with decreased patient survival [38]. A recent study found 
2106 acetylation-related single nucleotide variants (SNVs), 
6405 ubiquitination-related SNVs, and 883 SNVs in shared sites 
of the two PTMs, covering cancer samples of various types, in 
this study, several known oncoproteins (TP53, AKT1 and IDH1) 
were shown to be modified for acetylation in cancer [38].

Histone deacetylases (HDACs) are involved in the 
deacetylation of not only histone proteins but non-histone 
proteins as well, regulating important functions. Studies have 
indicated that HDACs can regulate the expression of genes 
by direct interaction with transcription factors such as E2f, 
Stat3, p53 etc. [39]. Altered HDAC activity is linked to tumor 
development, identifying HDACs among one of the most 
promising biomarkers/targets in cancer research. Vorinostat, 
the first FDA-approved HDAC inhibitor, is used in the treatment 
of relapsed and refractory cutaneous T-cell lymphoma (CTCL) 
[40].

Acetylation has many important effects on oncoprotein p53, it 
increases p53 protein stability. In many cell types, inhibition of 
HDACs that remove acetyl groups from p53 (i.e., HDAC1 and 
SIRT1) causes increased p53 acetylation and p53-dependent 
activation of apoptosis and senescence [41]. Acetylation is 
an essential regulator of the anti-cancer functions of p53 
[42]. In a study it was deduced that temporary and reversible 
inhibition of p53 acetylation in cancer subjects, especially 
those with p53-mutant tumors, may protect them from severe 
chemotoxicity [7].

It has been shown that expression of NATs may both be 
increased and decreased in cancer versus non-cancer tissues 
and these acetyltransferase enzymes have been suggested to 
act as oncoproteins as well as tumor suppressors in human 
cancers [37]. Acetylation is an important modification of 
proteins with effects on the metabolome level and is an 
important research area to understand its physiological 
consequences.

Methylation

Methylation is a comparatively budding and promising area of 
research which has emerged as a prevalent post-translational 
modification. Methylation of arginine/lysine residues on non-
histone proteins frequently mediates the transduction of 
cellular signals. With recent technological advancements the 
stage is now set to decode the ‘methylproteome’ to delineate 
its functions in health and disease [43]. 

Methylation of non-histone protein has an important 
regulatory role to play in a wide range of cellular processes 

[44] including transcriptional regulation, RNA metabolism and 
DNA damage repair. Various proteins involved in DNA repair 
(MRE11, p53, DNA polymerase b) have been shown to be 
controlled by arginine/lysine methylation [45]. 

With growing number of lysine methyltransferases (methylate 
non-histone proteins on lysine residue), a number of proteins 
like ERα, NF-κB, pCAF and other transcription factors have 
been identified that have implications in tumorigenesis 
and other metabolic disorders [1]. In addition to regulating 
gene expression, protein modification by methylation also 
contributes to the regulation of protein stability [46]. In a 
recent study, it was highlighted that BTG3 (B-cell translocation 
gene 3), a candidate tumor suppressor, promotes methylation 
of CHK1 (checkpoint kinase 1), a vital checkpoint kinase 
essential to normal cellular functions [15]. CHK1 has also been 
shown to be methylated in response to ultraviolet-induced 
DNA damage [47].

DNA methylation, catalyzed by DNA methyltransferases 
(DNMTs), is an important epigenetic modification. Plentiful 
studies have examined expression of DNMTs in tumor tissues, 
especially expression of DNMT1 [48, 49]. PTMs play a crucial 
role in determining the correct functions of DNMT1. Altered 
role of DNMT1 results in aberrant methylation patterns which 
may initiate tumor formation. Presently, possibilities of DNMT1 
as a new target for many tumors including breast cancer are 
being explored.

Arginine/lysine residues methylation is dynamic and reversible 
which can be removed by demethylation enzymes [50]. 
Identification of mechanisms involved in protein methylation/
demethylation remains an interesting area of research to 
understand the regulatory roles of target proteins in cancer 
and other diseases.

Phosphorylation

Phosphorylation is one of the most prominent PTM of 
proteins and is an important cellular regulatory mechanism 
as through phosphorylation and dephosphorylation events 
many proteins, enzymes and receptors are regulated. 
Phosphorylation is a reversible mechanism and regulates 
numerous cellular processes such as protein synthesis, cell 
division, signal transduction, cell growth, development 
and aging which happen through protein kinases and 
phosphatases. Especially, the protein kinases are accountable 
for cellular transduction signaling and their overexpression or 
malfunction is found in several diseases, mostly tumors [51]. 
Therefore, targeting protein kinases using kinase inhibitors 
can be valuable for the treatment of cancer. The most common 
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amino acid residues modified for phosphorylation are serine 
(Ser or S), threonine (Thr or T), and tyrosine (Tyr or Y), they also 
play indicative role in progression of cancer [18, 52].

A number of cellular signalling pathways including tyrosine 
kinase, MAP kinase, cadherin–catenin complex and others 
are major players of the cell cycle, and deregulation in their 
phosphorylation-dephosphorylation cascade has been 
shown to be manifested in the form of various types of 
cancers [53]. Phosphorylation of Akt/protein kinase B (PKB), a 
serine/threonine kinase which mediates a variety of biological 
responses, has a prognostic and/or predictive role of in several 
cancers including breast, prostate and non-small cell lung 
cancer [54]. Dysregulated tyrosine kinase activity is reported 
in different types of cancers for example amplification of 
Her2/neu was observed in tumor cells of breast cancer [55]. 
MAPK cascade (SOS-Ras-Raf- MAP kinase pathway), involved 
in the regulation of normal cell proliferation, differentiation 
and apoptosis, has an important role in cancer growth and 
progression [56]. 

Additionally, the importance of Raf and MEK in cancer 
progression and in promoting cancer growth has been well 
established [57]. Tumor suppressor p53 phosphorylation sites, 
Ser315 and Ser392 in the C-terminal regulatory domain, are 
associated with elevated p53-dependent transcription [58]. 
During DNA damage, expression of proapoptotic protein Bax, 
members of the Bcl-2 (B‑Cell Lymphoma 2) family of proteins, 
is upregulated by the protein p53. Such apoptotic pathways 
are the focus of cancer researchers to develop new drugs.

To sustain the functional integrity of the cadherin–
catenin complex phosphorylation is an important process. 
Dysregulation of this process has been found to be strongly 
associated with cell-adhesion defects in carcinomas including 
prostate cancer progression [53,59]. Studies have revealed 
that transforming growth factor β (TGF β) prevents the 
phosphorylation of retinoblastoma protein (pRb) which 
leads to its inactivation [60]. This signaling is altered in many 
human cancers [61], in some of which impassiveness of cyclin-
CDK4 complex to the inhibitory signals of p15INK4B leads to 
inactivation of pRb by hyperphosphorylation [62]. 

Phosphorylation pathways are crucial regulators of normal 
cellular functioning and these pathways are needed to be 
considered for more rational treatment of cancer.

SUMOylation

SUMOylation is a widely occurring reversible PTM which has 
attracted increasing attention as it is involved in a number of 
biological processes for the maintenance of genomic integrity. 

Small ubiquitin-like modifier (SUMO) is structure wise similar to 
that of ubiquitin and is covalently attached to lysine residues 
of specific target proteins [63], SUMO1, SUMO2/3 and SUMO4 
are the identified SUMO isoforms. SUMO pathway is conserved 
in all eukaryotes and plays pivotal roles in the regulation of 
DNA damage repair, gene expression, cellular signaling, cell 
cycle progression and apoptosis. Irregular SUMOylation can 
lead to the progression of a number of diseases, including 
cancer. The vital role of SUMOylation in tumorigenesis has 
gradually emerged [64].

Studies have shown that SUMOylation plays an important role 
in cancer [64] and many oncogenes and tumor suppressors 
are functionally regulated via SUMOylation [65]. BRCA1, a 
tumor suppressor gene in humans associated with breast and 
ovarian cancer is modified by SUMO in response to genotoxic 
stress, and co-localizes at sites of DNA damage with SUMO1, 
SUMO2/3 and the SUMO-conjugating enzyme Ubc9 [66].

SUMOylation has varied effects on transcriptional activity 
of androgen receptor (AR) which has an established role 
in prostate carcinogenesis [67]. SUMO-resistant DNA 
endonuclease, Mus81 mutants involved in homologous 
recombination repair, display compromised DNA damage 
responses associated to tumorigenesis [68]. An important 
SUMO-conjugating enzyme in the SUMOylation pathway, 
Ube2I, SUMO-inducer ARF and the SUMO-ligase PIAS1 were 
seen greater than normal levels in multiple myeloma patients 
[69]. 

Tumor suppressor p53 promotes cellular senescence as 
well as apoptosis. SUMO-1 conjugation with p53 has been 
shown to result in p53 stabilization and activation, causing 
the induction of senescence [70]. DNA damage signals or 
oncogenic mutations induce SUMO disorders that ultimately 
lead to cell senescence, effects of this on tumor or tumor 
microenvironment is the current focus of research. 

SUMO modification, as an important PTM, is a key to regulating 
cell activities. It has been accepted and confirmed by research 
that SUMO modification plays a vital role in the pathological 
processes. SUMO modification is linked with tumorigenesis 
and targeting SUMO pathways could be exploited in 
anticancer therapies.

Ubiquitination

Ubiquitination, as a multistep, conserved and highly dynamic 
process, functions to degrade and recycle proteins. It is 
involved in additional cellular processes such as activation 
of NFkB inflammatory response and DNA damage repair 
[71]. Ubiquitination also affects the result of many lethal 
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diseases like cancer [72]. Three main classes of ubiquitination 
enzymes are activating enzymes (E1), conjugating enzymes 
(E2), and ligases (E3). Unregulated expression of these 
enzymes, including DUBs (deubiquitinating enzymes) and 
other complexes (SCF complex) involved in ubiquitination 
mechanism, contributes to the signaling of various oncogenes 
leading to cancer progression and metastasis.

Ubiquitination displays parallel properties with 
phosphorylation but distinguishes itself in important ways 
[73]. As a marker, phosphorylation often triggers subsequent 
ubiquitination, in particular where ubiquitination leads to 
degradation [74], and in other cases ubiquitination provide a 
switching mechanism that can turn on/off the kinase activity 
of certain proteins [75]. Hence, understanding the crosstalk 
between these important PTMs is crucial to explore how they 
regulate signal transduction.

Various studies have shown that E2 ubiquitin conjugating 
enzymes (for example UBE2N and UBE2C) are associated 
with aberrant oncogenic signaling of numerous molecules 
including inflammatory NFkB and TGFb, receptor tyrosine 
kinases and others [76,77,78]. Like E2 ubiquitin conjugating 
enzymes, altered expression of E3 ubiquitin ligases also leads 
to aberrant oncogenic signaling [71]. For example, enhanced 
expression of STIP1 Homology and U-Box Containing 
Protein 1 (STUB1), an E3 ligase, is found to be associated 
with pancreatic, prostate and other cancer types [79]. DUBs 
are also important players of cellular processes such as 
DNA repair and cell cycle progression. Several studies have 
shown that altered than normal role of DUBs is involved with 
cancer progression [80,81,82]. It is clear that various enzymes 
involved in ubiquitination are linked with cancer progression 
hence there is need to develop therapeutic agents targeting 
these enzymes to counter the oncogenic pathways. 

PTMs based Cancer Markers

The understanding of mechanisms of PTMs has contributed 
to the identification of new biomarkers which are of relevant 
to clinical practice, enabling researchers to use targeted 
therapeutic approaches in the treatment of cancer. Specific 
inhibitors are being developed and testing of such inhibitors 
against target protein may prove to be effective in targeting 
certain types of cancer. The significance of crosstalk between 
different types of PTMs has been well recognized and 
targeting one or the other modification has been the focus 
area of cancer research. 

Discovery of novel anticancer drugs is critical for treating 
patients. This search of anticancer compounds is based on 

the genes, associated proteins and pathways which have 
been implicated in tumorigenesis. For example, in a recent 
study, a comparative global methylation profiling resulted 
in identification of 7 hyper-methylated (e.g., FBN1, LPP, 
and SOD3) and 61 hypo-methylated (e.g., HBE1, SNRPF, 
TPD52) markers for gallbladder cancer (GBC) [83]. Oncology 
drugs approved lately, target distinct cancer biomarkers or 
pathways in tumor cells. Table 2 lists some examples of the 
important cancer biomarkers, all of them are known to be 
post-translationally modified, and effectively targeted for the 
development of drugs. We have briefly discussed below some 
PTM based biomarkers associated with carcinogenesis. 

Table 2: Validated targets approved as cancer therapy and prognostic 

markers

Cancer 
Biomarker Indication Druga (Company)

EGFR  Lung Cancer Iressa/Gefitinib (Astra-
Zeneca)

KRAS Colorectal Cancer Erbitux/Cetuximab (Eli 
Lilly)

HER2 Breast Cancer Herceptin/Trastuzumab 
(Genentech)

BRAF Melanoma Mekinist/Trametinib 
(Novartis)

BCL-2 Leukemia Venclexta/Venetoclax 
(AbbVie/Genentech)

CD117 (KIT) Gastrointestinal Tumors Gleevec/Imatinib 
Mesylate (Novartis)

ALK Non-Small Cell Lung 
Cancer 

Zykadia/Ceritinib (No-
vartis) 

PI3K Delta Lymphoma Zydelig/Idelalisib (Gilead)

DNMT1 Leukemia Natdecita/Decitabine 
(Natco)

SMO Basal Cell Carcinoma Erivedge/Vismodegib 
(Genentech)

aMost of these drugs are recommended with companion diagnostics 

(CDx)

PTMs directly modulate the cellular signaling and trafficking 
of an important cell component, epidermal growth factor 
receptor (EGFR). EGFR is an important cancer biomarker 
owing to the molecular events associated with cancer. EGFR 
protein-protein interactions and PTMs are responsible for its 
signaling and trafficking which have been extensively studied 
[84]. Upon X-rays and chemotherapy treatments, EGFR 
becomes phosphorylated and this event is accompanied by 
receptor internalization provoking p38 or Src-dependent, and 
clathrin- and AP-2 adaptor-dependent endocytic trafficking 
[85,86,87]. It has been shown that abolishing p38-dependent 
EGFR internalization diminishes the efficacy of chemotherapy-
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induced cell death therefore promoting the cytotoxic effect of 
chemotherapy drugs such as Cisplatin [87]. Drugs, for example 
Gefitinib (Iressa) and Erlotinib (Tarceva), has been approved 
with either a companion or complementary diagnostic to 
target activating EGFR mutation (EGFR M+) in non-small cell 
lung cancer (NSCLC). Mutations involving the PTM sites of 
EGFR impair EGFR trafficking. EGFR sites, tyr1068 and tyr1173, 
are among the two most relevant phosphorylation sites of 
EGFR, and phosphorylation at tyr1068 has been identified 
as a powerful biomarker associated with strong Erlotinib 
sensitivity in lung cancer stem cells (LCSCs) [21]. In contrast, 
a recent study provided additional mechanistic aspects of 
EGFR regulation by showing that mutations preventing EGFR 
phosphorylation at tyr998 or in the ser1039 region abolished 
or greatly reduced EGFR interactions with Adaptin subunits 
AP-2 and AP-1, and resulted in impaired receptor trafficking 
[88]. Studying the biological effects of such events are is 
important to determine the efficacy of EGFR-targeting drugs.

Human epidermal growth factor receptor-2 (HER2) is another 
important cancer biomarker which is overexpressed in large 
number of breast cancers. HER2 is activated by phosphorylation 
at specific tyrosine residues. Strong expression of activated 
HER2 is associated with poor prognosis in HER2 positive 
breast cancer patients. Experiments on primary breast tumors 
showed that strong expression of HER2 phosphorylated at 
tyrosine 1221/1222 is associated with poor prognosis in HER2 
positive breast cancer patients [89]. 

To treat HER2 positive breast cancer patients, drug Trastuzumab 
(Herceptin) is used which inhibits HER2 signaling and its 
subsequent activation. Inception of companion diagnostics 
was with Herceptin. Herceptin mechanism involves inhibition 
of HER2 cleavage and prevention of the production of an 
active truncated HER2 fragment [90]. However, Herceptin 
resistance has been noted in some patients possibly due to 
failure to abolish HER2 phosphorylation, therefore, alternate 
treatment opportunities are also being explored to overcome 
acquired resistance in breast cancers. Studies have confirmed 
that Herceptin although down-regulated HER2 receptors in 
HER2-positive breast cell lines but failed to decrease HER2 
phosphorylation as this phosphorylation was maintained 
and increased by the ligand-induced activation of EGFR, 
HER3, and HER4 receptors, resulting in their dimerization with 
HER2, by a protein kinase B (PKB) negative feedback loop [91]. 
Similar feedback loops might also be involved in the acquired 
resistance to Herceptin, an area of further research. 

Physical blockade of the HER2 receptor is a further proposed 
mechanism for Herceptin resistance, for example, the mucin 

molecule, MUC4, with its extended carbohydrate structure 
seems to function as a barrier for biomolecular interactions 
in the extracellular environment [92,93]. A recent study 
highlighted the importance of cellular glycosylation on the 
binding of the drug Herceptin to the surface of cancer cells, 
the responsiveness of cancer cells to a chemotherapeutic 
agent, and potential of glycosylation inhibitors as future 
combination treatments for breast cancer [94]. This study 
showed the importance of the glycocaylx in the accessibility 
of the HER2 epitope to Herceptin [94], influencing many 
aspects of cancer cell biology and drug responsiveness since 
glycosylation affects many proteins.

Abnormal protein glycosylation is a well-known event in 
oncogenesis which modulates the response of cancer cells to 
chemotherapeutic and biological treatments. Glycoproteins 
and/or altered tumor-associated carbohydrate antigens 
are targeted and recognized by many currently employed 
antibodies that recognize commonly occurring alterations 
in neoplastic cell antigens. Several of these glycobiomarkers 
including cancer antigens, mucins, integrins, HER2, and 
other tumor-associated glycoproteins are currently in use for 
management of human cancers [95]. With modern studies, 
it is clear that glycan-markers give us the opportunity to 
use them as a tag for recognition and possible targeting of 
tumors. Glycobiomarkers, for example, mucin-type O-glycans 
Tn and its sialylated version STn carbohydrate antigens, 
expressed highly by many types of tumors, may serve not 
only as a prognostic marker but also as a therapeutic target 
[96]. Not only as a biomarker but also as a contributor to the 
cancer development, protein glycosylation is an important 
phenomenon. It is therefore imperative to explore tumor-
associated glycosylation as it provides novel diagnostic and 
therapeutic targets.

Estrogen receptor α (ERα) is expressed in the majority of 
breast cancers and promotes estrogen-dependent cancer 
progression. Redox- and phosphorylation-based PTMs are 
important and common modifications of ERα along with 
several other reported ERα PTMs, many of these modifications 
modulate receptors activity in breast tumors [97]. Important 
phosphorylation sites have been identified in endogenous 
ERα derived from the human breast cancer cell lines [97]. 
Phosphorylation of ERα induced by a growth factor pathway 
might be one mechanism of enhanced activation of the 
estrogen signal [98], for example, sites targeted by kinases such 
as MAPK, Akt, and c-Src [99]. ERα degradation by ubiquitin-
ligase activity is another important factor controlling ERα 
signaling. It has been suggested that E3 ubiquitin ligase 
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ring finger protein 31 (RNF31) and p21 protein (Cdc42/Rac)-
activated kinase 4 (PAK4) might be useful therapeutic targets 
in ERα-positive breast cancer. Both RNF31 and PAK4 act as 
modulator of ERα protein level by means of ubiquitination 
and phosphorylation mechanisms, respectively [100,101]. 
Alterations contributing to increased activity, and diminished 
degradation of ERα protein are likely to contribute to the 
pathogenesis of ERα-positive breast tumors.

Ubiquitously expressed E3 ligase protein cereblon (CRBN) has 
been emerged as a therapeutically important cancer biomarker 
in hematological malignancies. Drugs like Thalidomide 
and its second generation derivatives, Lenalidomide and 
Pomalidomide, have been approved to target CRBN by 
preventing its auto-ubiquitination [102]. 

A number of proteins have been identified to be associated 
with tumorigenesis directly or indirectly. Exploration of the 
effects of various PTMs on these proteins and further dissection 
of their mechanisms of actions will help in identification of 
novel cancer biomarkers and will also pave the way for newer 
therapeutic opportunities to target cancer. Nevertheless, 
noteworthy advancements have been made in the search for 
biomarkers related to PTMs and cancer. However, targeting 
of these biomarkers and associated pathways remains 
challenging.

Conclusion and Future Perspectives 

With new PTMs being unraveled, more and more proteins are 
being discovered to be involved in the pathogenesis of multiple 
diseases including cancer. The broad spectrum of PTMs 
imparts both metabolic and non-metabolic benefits to cancer 
cells. It is crucial to understand the key mechanisms associated 
with PTMs and their pathways, and also the crosstalk between 
various PTMs which will eventually expand our understanding 
to refine the clinical targeting of cancer biomarkers linked 
with PTMs and to contribute towards drug development for 
the treatment of cancers. Systematic identification along 
with functional and mechanistic characterization of PTMs of 
target proteins would aid in the development of innovative 
strategies for drug discovery and cancer therapy.

Better understanding of cancer dependency on PTMs and 
to anticipate the associated molecules and pathways is one 
of the major challenges in the future drug discovery. Overall 
good clinical response with current and new drugs under 
investigations is seen, however, with the emerging drugs, 
their resistance is also growing. This emerging resistance is 
another challenge scientists are weathering. Understanding 
resistance mechanisms will lead to deeper understanding of 

carcinogenesis and will also pave the way to discover new 
generation drugs with profound selectivity to overcome 
resistance. With new drugs, a large number of clinical trials will 
also be warranted to validate the efficacy of drugs. 

Factual state of cancer progression may not be completely 
reflected by simply observing the changes in gene expression 
levels therefore it is important to study PTMs to find out the 
differences between normal and cancer tissues. Further study 
and evaluation of various functional modifications of proteins 
and their role in biological pathways will be instrumental in 
broadening the avenue of translational medicine for deadly 
diseases like cancer.
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