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ABSTRACT

The acid-mediated tumor invasion hypothesis proposes that 
altered glucose metabolism exhibited by the vast majority 
of tumors leads to increased acid (H+ ion) production which 
subsequently facilitates tumor invasion [1-3]. The reaction-
diffusion model [2] that captures the key elements of the 
hypothesis shows how the densities of normal cells, tumor 
cells, and excess H+ ions change with time due to both 
chemical reactions between these three populations and 
density-dependent diffusion by which they spread out in 
three-dimensional space. Moreover, it proposes that each cell 
has an optimal pH for survival; that is, if the local pH deviates 
from the optimal value in either an acidic or alkaline direction, 
the cells begin to die, and that the death rate saturates at some 
maximum value when the microenvironment is extremely 
acidic or alkaline. We have previously studied in detail how 
the death-rate functions of the normal and tumor populations 
depend upon the H+ ion density [4]. Here, we extend previous 
work by investigating how the equilibrium densities (at which 
the time rates of change of the cellular densities are equal to 
zero) reached by the normal and tumor populations in three-
dimensional space are affected by the presence of the H+ 
ions, and we present detailed analytical and computational 
techniques to analyze the dynamical stability of these 
equilibrium densities. For a sample set of biological input 
parameters and within the acid-mediation hypothesis, our 
model predicts the transformation to a malignant behavior, 
as indicated by the presence of unstable sets of 
equilibrium densities.

KEYWORDS: Dynamical Stability Analysis; Fixed Points: 
Cancer Biology; Acid-Mediated Tumor invasion; Reaction-
Diffusion Systems; Partial Differential Equations.

INTRODUCTION

The revolutionary work of Warburg almost a century ago 
demonstrated that tumor cells utilize anaerobic metabolism 
to produce energy by converting glucose to ATP even in the 
presence of abundant oxygen [5]. The major disadvantage 
of anaerobic metabolism (when compared to the regular 

oxidation of glucose to CO2 and H
2
O) is the relatively low

efficiency (low ATP output); however, tumor cells compensate 
for that by increasing the glucose flux. Moreover, FDG-
PET relies basically on that glucose flux for tumor imaging 
purposes [6-10]. In fact, it has been well proven that the 
glucose consumption of tumors (primary and metastatic) is 
noticeably larger than normal-tissue cells [6-10]. In addition, 
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through PET imaging, a direct relationship between tumor 
aggressiveness (and prognosis) and the rate of glucose 
uptake has been shown [6,7]. The transformation from normal 
to anaerobic metabolism has been directly linked to the 
increased acid production exhibited by tumor cells [2]. Initially, 
it was assumed thatthe lactic acid produced by anaerobic 
metabolism would result in an acidic intracellular pH; 
however, studies with NMR spectroscopy have unanimously 
shown that the intracellular pH of tumors is generally slightly 
alkaline relative to normal cells [11]. Other measurements 
havedemonstrated that tumor cells actually excrete protons 
through amplification of the Na+/H+ antiporter and other 
membrane transporters. As a result, it is now clear that the 
extracellular pH of tumors is substantially lower (usually by 
about 0.5 pH unit) than normal [12-15]. Generally, a persistent 
pH below about 7.1 results in death of normal cells due to a 
p53-dependent apoptosis pathway triggered by increased 
caspase activity [16,17]. However, tumor cells are much more 
tolerant to acidic pH, presumably due to mutations in p53 or 
other components of the apoptotic pathway. In fact, tumor 
cells typically exhibit a maximum proliferation rate in relatively 
acidic mediums (i.e. pH 6.8) [18-20]. As a consequence, it has 
been concluded that the invasiveness of tumors are directly 
attributed to the acidification of their microenvironments, 
which, in turn, makes it ideal for tumor cells to proliferate and, 
moreover, corroborates the death of normal cells that compete 
against tumor cells for glucose and substrate; because of their 
relatively high intolerance of these acidic microenvironments.

An acid-mediated tumor invasion hypothesis (AMTIH) has 
been developed [1-3], wherein microenvironmental changes 
at the tumor-host interface caused by altered metabolism 
in transformed cells (accelerated uptake of glucose due 
to increased reliance on glycolysis) lead to an excess acid 
production, thus facilitating tumor invasion. Concurrent with 
this increase inglucose consumption is the up-regulation of 
the Na+/H+ antiport system [21,22]. The resulting net increase 
in tumor intracellular pH leads to normalization, and therefore 
to a decrease in extracellular pH by about 0.5 pH unit compared 
to normal tissue [11-13,15,20]. While some investigators have 
attributed this increased reliance on glycolysis to the existence 
of a compromised tumor blood supply leading to poor O2 
perfusion of tumor tissue [23], others have found evidence 
that it is a phenotypical consequence of transformation [24]. 

The reaction-diffusion model of the AMTIH [2] predicts the 
degree to which excess hydrogen ions in the tumor interstitium 
diffuse into the surrounding tissue. It also predicts the extent 
of the zone of altered interstitial pH found at the tumor-

host interface. This microenvironment is harmful to normal 
tissue because of three reasons. First, normal cell viability 
declines sharply below extracellular pH of 7.1 [11-13,15,20]. 
Second, an acidic microenvironment stimulates production of 
enzymes which degrade the extracellular matrix [25,26]. Third, 
diminished pH results in loss of intercellular gap junctions 
reducing the cohesion, collaboration, and communication 
among normal cells at the tumor edge [27]. This altered 
microenvironment leads to a progressive loss of normal cells 
and degradation of extracellular matrix. This subsequently 
allows tumor cells (which are much more resistant to acidic 
extracellular pH) to invade the host tissue. Eventually, the 
acid-mediation hypothesis of tumor invasion is supported by 
recent reports that high lactate levels are directly correlated 
with the likelihood of metastases, tumor recurrence, and 
restricted patient survival [28].

The main research focus in this paper is to investigate how 
the equilibrium densities reached by the normal and tumor 
populations are affected by the existence of the H+ ions. To 
achieve that, given some sample values of biological input 
parameters (which are patient-specific), we present a detailed 
approach (that utilizes both analytical and computational 
techniques) to solving numerically for the equilibrium points 
(fixed points) that represent the equilibrium densities at 
which the normal, tumor, and acid populations could coexist 
in three-dimensional space. Moreover, through solving 
numerically for the eigenvalues of the Jacobian matrix of the 
partial differential equations that represent how the three 
populations evolve with time, we determine the dynamical 
stability of these fixed points. 

This article is outlined as follows. In Sec. 2 we review the 
previous work on modeling tumor growth and invasion. The 
canonical Gatenby-Gawlinski reaction-diffusion model that 
captures the key components of the AMTIH is presented in 
Sec. 3. In Sec. 4 we present our analytical and computational 
results on the dynamical stability analysis of the reaction-
diffusion model. The conclusions and outlook are presented 
in Sec. 5.

PREVIOUS WORK

Tumor growth and other biological systems are particularly 
amenable to modeling with cellular automata. This approach 
has been used increasingly since Wolfram (1986) demonstrated 
that every automaton with local interactions belongs to one 
of a small number of universality classes [29]. Some of the 
earliest work in tumor modeling with cellular automata was 
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carried out by Düchting and Vogelsaenger to investigate 
the effects of different radio-therapeutic strategies on tumor 
growth [30,31].

More recently, Qi et al. [32] developed a cellular automaton 
model of tumor growth which includes immune system 
surveillance and accounts for mechanical pressure from within 
the tumor. This model is of interest because it reproduces 
the Gompertz growth law. The cellular automaton approach 
was also employed by Smolle and Stettner [33], and by 
Smolle [34,35] in an attempt to infer relationships between 
tumor morphology and basic biological features; such as cell 
cohesion, motility, and autocrine and paracrine growth factors. 
Kansal et al. [36,37] have made use of the Voronoi tessellation 
of space in a cellular automaton model of brain tumor growth 
dynamics. This elegant approach allows for the preservation 
of the discrete nature of cells (or groups of cells); but removes 
the anisotropy of a regular lattice.

Cellular automata have also been used to model 
neoangiogenesis, which is another crucial aspect of cancer 
biology. Chaplain and Anderson [38,39] have used cellular 
automata to solve the discrete version of a system of non-
linear partial differential equations which describe the 
response in space and time of endothelial cells to tumor 
angiogenesis factor and fibronectin, including migration, 
proliferation, anastomosis, and branching. Cellular automata 
have also been used to model the development of leaf veins, 
insect trachea, and tumor neovascularization [40].

Some models that use systems of partial differential equations 
have been developed to simulate tumor growth and invasion; 
such as tumor angiogenesis [38,39,42,46], post-surgical 
response to tumor removal [41], avascular tumor growth 
[43,44], tumor cell motility during invasion [45], and drug 
resistance and vascular structure in chemotherapy [47]. 
All these models (either automaton-based or continuum, 
stochastic or deterministic) simulate one or more aspects of 
cancer biology. Other models, including chemotherapeutic 
agent transfer [47] and diffusive vasculature for nutrient 
transfer [48], do so with a spatially-uniform term accounting 
for delivery or removal, not by including individual vessels 
distributed throughout space.

Reaction-diffusion model of tumor invasion

Gatenby and Gawlinski propose that the alteration of 
microenvironmental pH induced by the tumor’s anaerobic 
metabolism may provide a simple, yet complete mechanism 
for cancer invasion. In this section, we extend a reaction-

diffusion model they developed, which describes the spatial 
distribution and temporal development of tumor tissue, 
normal tissue, and excess H+ ion density [2]. A pH gradient 
across the tumor-host interface is proposed by the model, 
which is verified by experimental data. A transition from benign 
to malignant growth, analogous to the adenoma-carcinoma 
sequence, is predicted by the model through investigating 
the dynamics of the tumor-host interactions. This transition is 
controlled through the effects of many biological parameters. 
Moreover, it is crucial to pinpoint that the applicability of their 
model is limited to the vicinity of the tumor-host interface. 

All realistic models should include as fundamental factors 
properties common to almost all tumors, regardless of 
their originating genetic instability and heterogeneity. One 
fundamental cellular dynamic is that tumor cells evolve away 
from the original differentiated state toward one that is more 
primitive (less ordered). Metabolic changes adapt to this 
evolution by increasing reliance on glycolytic metabolism 
(even in the presence of abundant oxygen) despite the 
19-fold reduction in energy production that comes as a 
consequence [2]. The Gatenby-Gawlinski model proposes that 
it is specifically this energy-production inefficiency associated 
with that altered metabolism that corroborates successful 
tumor invasion, particularly the transformation-induced 
reversion of neoplastic tissue to primitive glycolytic metabolic 
pathways with a consequent increased acid production and 
the diffusion of the resulting acidic protons into neighboring 
normal tissue. That very acidic microenvironment is what 
eventually corroborates tumor invasion which is relatively 
more tolerant to it than normal cells. The following temporal 
sequence can be concluded after all. Initially, high H+ ion 
concentrations in tumors diffuse into neighboring normal 
tissue, exposing these normal cells to tumor-like interstitial pH . 
Next, normal cells immediately adjacent to the tumor edge are 
incapable of surviving in this chronically acidic environment. 
Eventually, the progressive loss of layers of normal tissue at 
the tumor-host interface facilitates tumor invasion.

From the temporal sequence mentioned above, we can 
conclude that the invasion mechanism capitalizes primarily 
on the low interstitial pH of tumors (resulting from the 
anaerobic metabolism) and the subsequent, relatively low 
viability of normal tissue in an acidic environment favorable to 
tumor tissue. The Gatenby-Gawlinski model mathematically 
frames the acid-mediation hypothesis as a system of reaction-
diffusion equations whose solutions could precisely predict 
the structure and dynamics of the tumor-host interactions.
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The acid-mediated tumor invasion hypothesis described 
above can be represented by the following system of reaction-
diffusion equations. Let N1 and N2 denote the cell densities in 
cell/cm3 of the normal and tumor populations, respectively. 
Assuming these populations only compete for available space, 
their temporal evolution is governed by the equations

1 1 2
1 1

1 2

2 1 2
2 2

1 2

(1 ),

(1 ),

dN N Nr N
dt K K

dN N Nr N
dt K K

= − −

= − −

where r1,2 and K1,2 are the growth rates in s-1 ( s denotes second) 
and spatial carrying capacities in cell/cm3 of the respective 
populations. Moreover, if we propose a diffusion model 
similar to the Fickian one, where the diffusion parameters are 
themselves density-dependent [maximum value in vacant 
space and zero in high concentrations (close-packed cells)], 
then Eq. (1) becomes 

where    and
2ND in cm2/s are the empty-space diffusion 

constants of the normal and tumor cells, respectively. For 
simplicity we assume that these are approximately equal: 

              .

The Lotka-Volterra terms ensure that the density-dependent 
[0, ND∈diffusion parameters are always positive-definite ( ]) 

[49].

Next, the model assumes that each cell has an optimal 
pH for survival, and that if the local pH deviates from the 
optimal value (either in the acidic or alkaline direction), the 
cells start to die. In addition, it proposes that the death rate 
saturates at some maximum value when the environment 
is extremely acidic or alkaline. A simple ad-hoc functional 
form meeting these criteria is the “inverted Gaussian”

1,2 2
1,2 1,2

1,2

(H) [1 exp{ ( ) }],
2

opt

width

H H
f d

H
−

= − −

where H is the local concentration of H+ ions in mol/L, d1,2 are 
the saturated death rates in s-1, 1,2

optH  are the local H+ ion con-
centrations in mol/L, corresponding to the optimal pH’s, and   

1,2
widthH  are the half-widths of the “inverted Gaussian” in mol/L. 

Substituting the death rates (3) into (2) we obtain
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The H+ ions are produced at a rate proportional to the local 
concentration of tumor andremoved by the combined effects 
of buffering and vascular evacuation, both of which are 
proportional to micro-vessel areal density. Thus

3
2

2 3 0 3( ,)H r N d H H D
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∂

− +
∂
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where H is the H+ ion concentration in mol/cm3, r3 is the H+ ion 
production rate in mol/(cell *s), d3 is the H+ ion uptake rate in 
s-1, H0

 is the H+ ion concentration in serum, and D3 is the H+ ion 
diffusion constant in cm2/s. 

Eq. (4) and (5) can be rewritten in terms of the variables

In dimensionless form Eq. (4) and (5) become
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For in vitro spheroids, doubling times are between 1 and 4 
days. Therefore, this yields r2 = ln 2/2.5 days ≈ 2.0 x 10-6/s. For 
normal tissue wound healing, 4 days seem reasonable for the 
doubling time; thus, r1 = ln 2/4.0 days ≈ 2.0 × 106/s . The vol-
ume-limited carrying capacities of tumor and normal tissues 
are assumed to be the same and given by K1 = K ≈ 5 × 108 cells/
cm3. For vascular evacuation without buffering d3 = αp, where 
α ≈ 200/ cm is the vessel areal density and p ≈ 1.2 × 104 cm/s 
is the vessel permeability for lactate, resulting in a removal 
rate of 2.4 ×10-2/s . Local buffering might increase this by 25%. 
Thus, the final estimate for this rate is d3 ≈ 3.0 ×10-2/s. If the se-
rum pH0 = 7.4 is also the optimal pH for normal tissue growth, 
then H1

opt = H0 3.98 × 10-11 mol/cm3. An optimal pH of 6.8 for 
tumor growth gives H2

opt=1.58 × 10-10 mol/cm3. 

As for acid production rate, if a tumor is sufficiently large, then 
the temporal and spatial derivatives at its coreare small. From 
Equation (5) we see that r3 ≈ d3 (Hcore− H0 )/ K2. Assuming a 
core pH of 6.4, this yields r ≈ 2.2 × 10-20 mol/(cell*s). This last 
value is remarkably consistent with the curve fit results of 
the Martin-Jain data to the old model [50]. The lactic acid and 
cellular diffusion constants are D3 ≈ 5 × 10-6 cm2/s and DN ≈ 2 
× 10-10 cm2/s, respectively. 

Using the values above, the numerical estimates of the 
dimensionless parameters in Eq. (7) and (8) are as follows: 

3 4
2 2 1 3 3 2 0 1 3 3 1/ 1.6, / H 1.4 10 , / 1.5 10 ,r r r K r d rρ ρ δ= = = = × = = ×

4
1 1 23 3 0 2 010 , / H/ 2.5 / 1.0, / 4.0,opt opt opt opt

N HD HD H×∆ Λ= Λ = = ==

1 1 0 2 2 0 1 1 1/ 0.1, / 0.4, / 2.0,width width width widthH H H H d rδΛ = = Λ = = = =
and  2 2 1/ 2.0d rδ = = . The last four values are admittedly 
guesswork; but it is reasonable to choose the saturated death 
rates greater than the growth rates and the width of the 
optimal pH region for tumor cells greater than that for normal 
cells.

Equilibrium densities and dynamical stability analysis

Here, we present a detailed technique we developed to 
solve for the fixed points of the reaction-diffusion system 
defined in Eq. (7), with the sample numerical values of the 
biological input parameters given in Sec. 3, and determine 
their dynamical stability. The significance of the fixed points 
is that they determine equilibrium densities of the normal, 
tumor, and acid populations at which they could coexist in 
three-dimensional space (if no malignant behavior is already 
in progress). The dynamical stability of the fixed points can 
be determined by solving numerically for the eigenvalues of 
the Jacobian matrix. If all eigenvalues are negative, the fixed 
point is considered to be stable; however, if one or more of the 

eigenvalues is (are) positive, the fixed point is considered to 
be unstable. A stable fixed point represents an intermediate 
balance between the normal, tumor, and acid populations 
where none of them is likely to undergo any noticeable 
growth into the other two; however, an unstable fixed point 
where tumor cells are very likely to invade normal tissue 
upon any slight perturbations of the cellular densities could 
potentially develop into a malignancy. Note that in Equation 
(7), we present multiple reaction and diffusion factors that 
could contribute to a change in the cellular densities of the 
three populations. By mathematical definition, if the fixed 
point is stable, after slight changes in the equilibrium cellular 
densities (due to e.g. cellular diffusion) have taken place, the 
cellular densities tend to converge infinitesimally back to their 
initial equilibrium values (so the time rates of change of the 
cellular densities remain at zero after all); however, on the 
other hand, in an unstable fixed point, after the occurrence 
of slight perturbations in the equilibrium cellular densities, 
significant divergences off the equilibrium values are very 
likely to take place (that is, the cellular populations are not 
necessarily expected to converge back to their initial values), 
where malignancies are very likely to develop upon any small 
perturbations of unstable fixed points; because the presence 
of the acid specifically would always significantly catalyze the 
process in the direction where tumor invasion into normal 
tissue takes place (not vice versa).

Note that, when the microenvironment is extremely acidic, 
the death rate of tumor cells saturates at a value considerably 
lower than its counterpart for normal cells, and this is 
interpreted as tumor cells being more capable of surviving in 
an extremely acidic microenvironment [2,4].

We find the fixed points and analyze their dynamical stability 
as follows. If we restrict our attention to solutions η1, η2, and 
η3≡ Λ, which depend on time but are independent of the
spatial coordinate ξ, Eq. (7) reduce to three coupled ordinary 
differential equations

The fixed points or points of equilibrium are points (η1

*, η2

*,
η3

*) where the right sides of Equation (9) vanish. Near a fixed
point, the differential equations may be linearized in the form

1
1 1 2 3

2
2 1 2 3

3
3 1 2 3

( , , ),

( , , ),

( , , ).

d f
dt

d f
dt

d f
dt

η η η η

η η η η

η η η η

=

=
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Substituting ηj −ηj

* = aj e
λt

, one finds n exponential solutions,
with λ and aj given by the eigenvalues and eigenvectors of the 
matrix * *

1 ,..., ) /( .jNf nη η∂ ∂  If all n of the eigenvalues λ are
negative, η −η* decays exponentially with time, and the fixed 
point is “stable”. If one or more of the λ values is (are) positive on 
the other hand, the fixed point is unstable. Note that variables 
η

1
(t), η

2
(t), and Λ(t) depend on t but not on the coordinate ξ. 

Next, we solve numerically for the fixed points. To find the fixed 
points, we set the derivatives in the cellular equations [the first 
and second of Eq. (7)] equal to zero after eliminating Λ using 
the acid equation [the third in Eq. (7)]. This yields two non-
linear equations in two unknowns, namely η

1 and η
2
, which 

are physically contained within the interval [0,1]. Therefore, we 
partition the domain 0 ≤ η

1
≤ 1 ⊗ 0 ≤ η

2 ≤ 1 into a rectangular
grid with ∆η

1 = ∆η
2 = 0.01 (10000-points grid), and use these 

10000 points as numerical inputs for a multi-dimensional 
Newton’s algorithm. For a specific Newton’s solution for η1 and 

η2, η3 is found using the third equation in (7). We determine the 

stability of the resulting solutions by numerically computing 
the eigenvalues of the Jacobian matrix (we have published the 
software package we used to perform the dynamical stability 
analysis presented here [4]). The fixed- points analysis for the 
parameters given in the previous section is shown 
below [4,51] in Table 1.

Fixed point 3 is stable (all eigenvalues are negative). Fixed 
point 4 is unstable (some eigenvalues are positive) and is 
very likely to develop into a malignancy upon any slight 
perturbations of the equilibrium cellular densities [note that 
when η1 is zero, this means that all the normal population has 
died at the interface (microenvironment) joining the three 
populations]. Fixed points 1, 2, and 5 are all unstable and 
unphysical (negative density values). Note that the existence 
of two different physical solutions (either stable or unstable) 
means that for the biological input parameters given in Sec. 3, 
wherever the normal, tumor, and acid populations are found 
in a dynamical equilibrium in three-dimensional space, it 
must be in one of these two solutions [note that we are not 

* * * *3
*1 2 3

1

( ) ( , , )( ).i i i
j j

j j

d f
dt

η η η η η η η
η=

− ∂
= −

∂∑ (10)

reporting here trivial fixed points such as (0,0,1) and (1,0,1)].

DISSCUSSION, CONCLUSIONS, AND FUTURE WORK

The canonical Gatenby-Gawlinski model of the acid-mediated 
tumor invasion hypothesis presented in Sec. 3 shows how the 
densities of normal cells, tumor cells, and excess H+ ions change 
due to two factors: first, local chemical reactions between the 
three populations and, second, density-dependent diffusion 
by which these populations spread out in space. According to 
the hypothesis, the dominant mechanism for cancer invasion 
is the tumor-induced alteration of microenvironmental pH. 
Moreover, the hypothesis predicts an acidic pH gradient 
extending into the peritumoral normal tissue, where the 
normal mammalian cells (but not tumor cells) are intolerant 
of acidic interstitial pH in the range typically found within this 
gradient.

In Sec. 4 we have developed detailed analytical and 
computational techniques to analyze the dynamical stability 

of the Gatenby-Gawlinski reaction-diffusion system by solving 
for the fixed points of the differential equations [see Eq.  (7)] 
that represent how the normal, tumor, and acid populations 
evolve with time, then determining the stability of these fixed 
points by solving for the eigenvalues of the Jacobian matrix. The 
significance of the fixed points is that they determine possible 
densities at which the normal, tumor, and acid populations 
could coexist in dynamical equilibrium in three-dimensional 
space (if no malignant behavior is already in progress; that 
is, the time rates of change of the densities of the three 
populations are equal to zero). As for the dynamical stability of 
the fixed points, if all eigenvalues are negative, the fixed point 
is stable; however, if one or more of the eigenvalues is (are) 
positive, the fixed point is unstable. In a stable fixed point, after 
slight changes in the equilibrium cellular densities have taken 
place (due to e.g. cellular diffusion), the cellular densities tend 
to converge infinitesimally back to their initial equilibrium 
values (so the time rates of change of the cellular densities 
remain at zero after all); however, on the other hand, in an 

Fixed Point Eigenvalues Stable/Unstable

(−0.26500634, 0.01500634, 1.14005922) (−1.500000e+04, 1.205189e−01, 1.205189e−01) Unstable (unphysical)

(−0.23499366, − 0.01500634, 0.85994078) (−1.500000e+04, 1.295203e−01, 1.295203e−01) Unstable (unphysical)

(0.00000000, 0.37206032, 4.47256298) (−1.498978e+04, −1.081070e+01, −1.372060e+00) Stable

(0.00000000, 0.26431209, 3.46691282) (−1.500676e+04, 6.337857e+00, −1.264312e+00) Unstable

(0.00000000, −0.25000000, −1.33333333) (−1.500000e+04, −7.500000e−01, 4.000000e−01) Unstable (unphysical)

Table 1. Fixed-point analysis for the biological input parameters given in Sec.3.



2019; 2(4): 20Fouad AM. 

Citation: Fouad AM (2019). Dynamical Stability Analysis of Tumor Growth and Invasion: A Reaction- Diffusion Model. Oncogen 
2(4): 20. 7

ISSN: 2641-9475

DOI: https://doi.org/10.35702/onc.10020

unstable fixed point, after the occurrence of slight changes in 
the equilibrium densities, significant divergences off the initial 
equilibrium values are likely to take place, where malignancies 
are likely to emerge; because, on balance, the presence of the 
acid specifically would always significantly corroborate the 
process into only one direction; that is, tumor invasion into 
normal tissue (not vice versa). Whenever a malignant behavior 
is already in progress, this implies that the time rate of change 
of the density of tumor cells is positive. A fixed point (either 
stable or unstable) physically represents an intermediate 
balance between the three populations where none of them 
is undergoing any noticeable growth into the other two. If 
the fixed point is stable, a malignant behavior is unlikely to 
emerge, even after the occurrence of slight perturbations 
of the equilibrium cellular densities at the interface 
(microenvironment) joining the three populations. On the 
other hand, an unstable fixed point where tumor cells are very 
likely to invade normal tissue upon any slight perturbations 
of the equilibrium cellular densities could potentially develop 
into a malignancy. Note that, in the reaction-diffusion model 
we present here, from a mathematical standpoint and within 
the acid-mediation hypothesis, only the dynamical stability 
of the equilibrium points (not the initial equilibrium density 
values) controls whether a prospective malignant behavior 
is likely; because the dynamical stability by itself controls 
what happens after any slight perturbations of the initial 
equilibrium density values have taken place. We have solved 
numerically for the fixed points (and their dynamical stability) 
of the reaction-diffusion system presented in Eq. (7) with the 
sample numerical values of the biological input parameters 
provided in Sec. 3. As demonstrated in Table 1, for physical 
fixed points (all density values are positive), our numerical 
results show that both stable (fixed point 3) and unstable 
(fixed point 4) configurations are possible. For the particular 
set of the biological input parameters we have operated on in 
Sec. 3, the existence of two different physical solutions means 
that wherever the three populations are found in a dynamical 
equilibrium in three-dimensional space, it must be in one of 
these two solutions.

As for future work, it would be interesting to study 
systematically how the fixed-point behavior depends on the 
biological input parameters. In simple systems this can be done 
analytically; but in systems as complex as the one introduced 
in Eq. (7), numerical methods are needed. Possibly, one can 
use numerical algorithms [52], designed to compute branches 
of stable and unstable solutions, and compute the Floquet 
multipliers that determine stability along these branches. The 

initial starting points for the computation of periodic orbits 
are generated automatically at the Hopf bifurcation points. 
Such techniques can also locate folds, branch points, period-
doubling bifurcations, and bifurcations to tori. Along branches 
of periodic solutions, branch switching is possible at branch 
points and at period-doubling bifurcations.

Once the bifurcation diagrams in parameter space are 
understood in this way, dynamical simulations can be 
performed to determine tumor growth or regression rates.
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